Nucleosome accessibility governed by the dimer/tetramer interface

نویسندگان

  • Vera Böhm
  • Aaron R. Hieb
  • Andrew J. Andrews
  • Alexander Gansen
  • Andrea Rocker
  • Katalin Tóth
  • Karolin Luger
  • Jörg Langowski
چکیده

Nucleosomes are multi-component macromolecular assemblies which present a formidable obstacle to enzymatic activities that require access to the DNA, e.g. DNA and RNA polymerases. The mechanism and pathway(s) by which nucleosomes disassemble to allow DNA access are not well understood. Here we present evidence from single molecule FRET experiments for a previously uncharacterized intermediate structural state before H2A-H2B dimer release, which is characterized by an increased distance between H2B and the nucleosomal dyad. This suggests that the first step in nucleosome disassembly is the opening of the (H3-H4)(2) tetramer/(H2A-H2B) dimer interface, followed by H2A-H2B dimer release from the DNA and, lastly, (H3-H4)(2) tetramer removal. We estimate that the open intermediate state is populated at 0.2-3% under physiological conditions. This finding could have significant in vivo implications for factor-mediated histone removal and exchange, as well as for regulating DNA accessibility to the transcription and replication machinery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sin mutations alter inherent nucleosome mobility.

Previous studies have identified sin mutations that alleviate the requirement for the yeast SWI/SNF chromatin remodelling complex, which include point changes in the yeast genes encoding core histones. Here we characterise the biochemical properties of nucleosomes bearing these mutations. We find that sin mutant nucleosomes have a high inherent thermal mobility. As the SWI/SNF complex can alter...

متن کامل

A New Fluorescence Resonance Energy Transfer Approach Demonstrates That the Histone Variant H2AZ Stabilizes the Histone Octamer within the Nucleosome*□S

Nucleosomes are highly dynamic macromolecular complexes that are assembled and disassembled in a modular fashion. One important way in which this dynamic process can be modulated is by the replacement of major histones with their variants, thereby affecting nucleosome structure and function. Here we use fluorescence resonance energy transfer between fluorophores attached to various defined loca...

متن کامل

Structural Insights into the Association of Hif1 with Histones H2A-H2B Dimer and H3-H4 Tetramer.

Histone chaperones are critical for guiding specific post-transcriptional modifications of histones, safeguarding the histone deposition (or disassociation) of nucleosome (dis)assembly, and regulating chromatin structures to change gene activities. HAT1-interacting factor 1 (Hif1) has been reported to be an H3-H4 chaperone and to be involved in telomeric silencing and nucleosome (dis)assembly. ...

متن کامل

A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome.

Nucleosomes are highly dynamic macromolecular complexes that are assembled and disassembled in a modular fashion. One important way in which this dynamic process can be modulated is by the replacement of major histones with their variants, thereby affecting nucleosome structure and function. Here we use fluorescence resonance energy transfer between fluorophores attached to various defined loca...

متن کامل

Biophysical Characterization of the Dimer and Tetramer Interface Interactions of the Human Cytosolic Malic Enzyme

The cytosolic NADP(+)-dependent malic enzyme (c-NADP-ME) has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011